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Abstract

It is generally accepted that incorporation of unsteady rotational sources and sinks into the acoustic energy balance

equation leads to a more precise assessment of acoustic instability in rocket chambers. The process involves the calculation

of 10 acoustic growth rate terms that arise in the context of an oscillating flow in an idealized rocket chamber; the chamber

is modelled as an injection-driven enclosure with coupling along its porous walls between acoustical and vortical waves.

In this study, we convert the 10 stability integrals from volume to surface form. The surface integrals are then verified using

numerical comparisons for three baseline cases that span a practical range of solid rocket motors. The surface integrals are

further reduced and presented in a strictly acoustical form that is directly amenable to implementation in the standard

stability prediction program. This code devotes itself to the assessment of acoustic energy in rocket motors. The reduction

to surface form facilitates the evaluation of individual stability growth rates as each becomes a function of quantities that

are distributed along the chamber’s boundaries. By obviating the need to compute the rotational field (which is the most

difficult to capture, especially in complex geometry), the evaluation of acoustic stability integrals is simplified for motors

with variable grain configuration.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Combustion instability is a long-standing problem that was first observed in the test firings of solid rocket
motors in the 1930s. Given the limited resources available for measuring the high frequency pressure
oscillations that accompanied the onset of instability, early diagnostic tools were based on simple detection
methods. These included visual inspection and interpretation of irregular exhaust plumes, rippled conduits,
and the auditory tones produced during motor firings. As technology progressed and experimental capabilities
improved, combustion instability became identifiable from its large amplitude pressure excursions and the
particular spectra that it engendered.
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.10.001

ing author. Tel.: +1931 393 7280; fax: +1 931 393 7530.

esses: Sean.R.Fischbach@nasa.gov (S.R. Fischbach), maji@utsi.edu (J. Majdalani).

ress: Acoustic and Stability Engineer, Qualis Corporation, NASA Marshall Space Flight Center, Huntsville, AL 35812,

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.10.001
mailto:Sean.R.Fischbach@nasa.gov
mailto:maji@utsi.edu


ARTICLE IN PRESS
S.R. Fischbach, J. Majdalani / Journal of Sound and Vibration 321 (2009) 1007–10251008
From its earliest beginnings, the modelling of combustion instability mechanisms received attention from a
number of capable investigators. A short list would include Crocco and Cheng [1,2], Sirignano and Crocco [3],
Mitchell [4], Zinn [5], Culick [6], and Flandro [7–10]. These researchers have attempted, in a series of
evolutionary studies, to apply mechanistic approaches to capture and predict essential combustion instability
behaviour.

Hart and McClure [11,12] were perhaps the first to evoke the concept of an energy balance equation in
assessing motor stability. Their approach, however, did not attempt to decompose unsteady energy into its
irrotational (compressible) and rotational (solenoidal) parts. Later investigators employed a variety of
experimental [13–16], numerical [17–24], and analytical methods to explore particular aspects of this problem
(e.g. Refs. [25–42]). The present analysis serves to extend the general energy method that was introduced in
1959 and later enhanced in 1985 [10].

Following similar lines to those sketched by Hart and McClure [11,12], Flandro and Majdalani [43], and
Majdalani et al. [33] have shown that, by incorporating unsteady rotational terms into the acoustic energy
equation, a more accurate estimation procedure for the progression of internal energy in rocket motors can be
obtained. In subsequent studies [33,34], their multidimensional approach was confirmed and extended to other
geometry [22–24].

The multidimensional energy assessment involves both rotational and irrotational contributions to the
instantaneous pressure and velocity fields (p, u) in an elongated chamber. As a result of retaining the effects of
unsteady vorticity, the predictive formulation gives rise to 10 volume integrals representing distinct acoustico-
vortical mechanisms affecting stability. In previous work [33,34], these 10 integrals have been classified and
characterized according to their physical significance. In short, they may be expanded into a series of
individual factors that can be aggregated to obtain the total linear instability growth rate, am. This is given by
am ¼ a1 þ a2 þ a3 þ � � �.

In this work, the focus will be on the linear growth rate am and the conversion of its constituents
from volume to surface integral form. This operation requires the application of surface treatment,
several vector theorems, the no slip condition at the porous walls, and other boundary related responses,
to the 10 stability factors. The conversion to surface form will be shown to markedly improve the
practical evaluation of these predictive integrals. At the outset, calculations will no longer be dependent on the
complex fluid flow interactions inside the motor, particularly when the mode shapes and frequencies can
be obtained analytically or numerically. By taking advantage of surface coupling between acoustical and
rotational flow variables, the rotational components will be nearly eliminated from the analysis. Not only will
the resulting growth rates be expressible in surface integral form, but they will also be made mostly dependent
on acoustic variables. The final form will be incorporated into the existing acoustic code. By way of
confirmation, French et al. [22] will then show that their adaptation yields better agreement with available
measurements.

The present article comprises two main sections: analysis and verification. At first, the acoustic stability
integrals that have been previously derived in volume form [33,43] are systematically converted to surface
form. Next, the resulting expressions are verified for the case of a full-length, internal burning, cylindrical
chamber. The idealized, circular-port chamber is routinely used by Blomshield and Mathes [13], Bloomshield
et al. [14,15], Fabignon et al. [16], Chedevergne et al. [44], and others.
2. Analysis

2.1. Energy assessment

Our study considers the geometry and nomenclature adopted in several studies of the circular-port motor
shown in Fig. 1 [8,43]. The evolution of the system energy (E) with rotational corrections in an injection-driven
porous enclosure was developed by Flandro and Majdalani [43] and later refined in Ref. [33]. The description
of acoustico-vortical wave components was obtained in different chambers by Flandro [45], Majdalani and
Flandro [46], and Majdalani [39–42]. Using similar nomenclature, our starting point is the time rate of change
of the acoustic energy E that retains both vorticity-driven, rotational (�) and pressure-driven, irrotational (^)
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Fig. 1. Full-length grain geometry and coordinate system.
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components of velocity u and pressure p. This expression is

dE

dt
¼

ZZZ
V

�r � ðp̂ûÞ � 1
2

MbðU � rp̂2
Þ �Mb½û � rðU � ûÞ�

�
þ 4

3
d2û � rðr � ûÞ

þMb½û � ðû�XÞ þ û � ðU� xÞ� � ũ � rp̂

�Mb½ũ � rðU � ûÞ þ û � rðU � ũÞ þ ũ � rðU � ũÞ � ũ � ðU� xÞ � ũ � ðũ�XÞ�

þ 4
3
d2ũ � rðr � ûÞ � d2½û � ðr � xÞ þ ũ � ðr � xÞ��û � rp̃� ũ � rp̃

�
dV :

9>>>>>>>=
>>>>>>>;

(1)

In the above, the surface Mach number is defined as Mb ¼ Vb/a0, where Vb is the wall blowing velocity and a0
is the average speed of sound. Viscous effects are reflected in the viscous parameter d ¼ ½n=ða0RÞ�

1=2 with the
kinematic viscosity being n ¼ m/r and R denoting the chamber radius. The chamber volume is designated by
V ¼ pR2L with r, z, t being the radial, axial and temporal coordinates, respectively. This study utilizes the
incompressible Taylor–Culick mean flow profile U [35], where

U ¼ Urer þUzez ¼ �r�1 sinðxÞer þ pz cosðxÞez. (2)

Here x � 1
2
pr2 while er and ez denote the unit vectors in the r and z directions. In Eq. (1), o and O represent

the unsteady and mean vorticity magnitudes. The stability integrals to be converted will repeatedly refer to
Eq. (1). The unsteady pressure and velocities represented in Eq. (1) are for longitudinal plane waves that are
expressible via [34]

p̂ ¼ p̂m expðamtÞ cosðkmtÞ; p̂m ¼ cosðkmzÞ ðacoustic pressure mode shapeÞ, (3)

û ¼ ûm expðamtÞ sinðkmtÞ; ûm ¼ sinðkmzÞez ðacoustic velocity mode shapeÞ, (4)

and, for the rotational parts,

p̃ ¼ expðamtÞ½p̃r
m cosðkmtÞ þ p̃i

m sinðkmtÞ�;
p̃r

m ¼ �
1
2
pMbz sinðcÞ sinð2xÞ expðfÞ sin½kmz sinðxÞ�

p̃i
m ¼

1
2
pMbz cosðcÞ sinð2xÞ expðfÞ sin½kmz sinðxÞ�

)
, (5)

ũ ¼ expðamtÞ½ũr
m cosðkmtÞ þ ũi

m sinðkmtÞ�;
ũr

m ¼ sinðxÞ expðfÞ sinðcÞ sin½sinðxÞkmz�ez

ũi
m ¼ � sinðxÞ expðfÞ cosðcÞ sin½sinðxÞkmz�ez

)
, (6)

with the superscript r and i depicting the real and imaginary parts of a complex exponential. In the above
km ¼ mp/l represents the dimensionless wavenumber of the mth axial acoustic mode in a chamber of aspect
ratio l ¼ L/R (Fig. 1). The remaining arguments and parameters include

fðrÞ ¼
x
p2

1�
1

sinðxÞ
� x

cosðxÞ

sin2ðxÞ
þ IðxÞ � I 1

2
p

� �� �
; cðrÞ ¼ �

km

pMb

ln tan 1
2
x

� �
, (7)

where

IðxÞ �

Z x

0

Z csc ZdZ ¼ xþ
1

18
x3 þ

7

1800
x5 þ

31

105 840
x7 þOðx9Þ. (8)

Note that x ¼ k2
md

2=M3
b is a dimensionless group parameter representing the relative effects of viscosity with

respect to unsteady inertia [47], and S ¼ km/Mb is the Strouhal number [37].
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The unsteady energy density for this vortico-acoustic field may be obtained after Kirchoff [48],
namely,

e ¼ 1
2
½p̂2
þ uð1Þ � uð1Þ�; uð1Þ ¼ ûþ ũ. (9)

Realizing that the energy transfer mechanism unfolds more slowly than the oscillation mechanism, the
characteristic time scale for energy transfer may be chosen to be much larger than the period of oscillation.
Time averaging may be carried out by averaging over the period of oscillation. The energy density is also
averaged over the chamber volume V, thus leading to

E ¼

ZZZ
V

heidV ¼
1

2

ZZZ
V

hp̂2
þ uð1Þ � uð1ÞidV . (10)

Inserting the unsteady field into the foregoing equations enables us to write

hei ¼
1

4
expð2amtÞ p̂2

m þ ûm � ûm

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{irrotational

þ 2ûm � ũ
i
m þ ũr

m � ũ
i
m þ ũi

m � ũ
i
m

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rotational
2
64

3
75. (11)

Then, since

dE

dt
¼ am expð2amtÞE2

m; am ¼
XN

i¼1

ai, (12)

the energy normalization function E2
m may be retrieved. One obtains E2

m ¼
5
8pL=R for an internal burning

cylindrical chamber. In general, as shown in detail by Majdalani et al. [34], E2
m can be derived from

E2
m ¼

1

2

ZZZ
V

ðp̂2
m þ ûm � ûm þ 2ûm � ũ

i
m þ ũr

m � ũ
r
m þ ũi

m � ũ
i
mÞdV . (13)

2.2. Integral conversion

2.2.1. Pressure coupling and nozzle damping integral

The extended pressure coupling correction factor combines the first three irrotational integrals that appear
in Eq. (1). These represent pressure coupling and nozzle damping due to the acoustic energy being transported
away by the mean flow field. Using standard arguments, the corresponding energy growth rate may be
determined to be

a1 ¼
E�2m

expð2amtÞ

ZZZ
V

�r � p̂ûþ
1

2
MbUðp̂Þ

2

� �
�Mb½û � rðU � ûÞ�

	 

dV . (14)

The divergence theorem can be directly applied to the first term on the right-hand-side of Eq. (14). The second
term, however, requires the use of vector identities and the rewriting of the unsteady velocities in terms of the
unsteady pressure [33]. At the outset, Eq. (14) becomes

a1 ¼
1

4
MbE�2m

ZZ
Sb

cos2ðkmzÞdS �

ZZ
SN

UN cos2ðkmzÞdS

8><
>:

9>=
>;

þ
1

2
MbE�2m

ZZ
Sb

cos2ðkmzÞ A
ðrÞ
b þ

1

2

� �� �
dS �

ZZ
SN

cos2ðkmzÞ A
ðrÞ
N þ

1

2
UN

� �� �
dS

0
B@

1
CA, (15)

where Sb and SN refer to the porous sidewall and nozzle entrance plane, respectively. Moreover, A
ðrÞ
b ¼

�n � û=ðMbp̂Þ is the burning surface admittance, A
ðrÞ
N ¼ n � û=ðMbp̂Þ is the nozzle entrance plane admittance,
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and UN is the mean flow velocity in the nozzle entrance plane. Collecting similar integrals, one obtains

a1 ¼
1

2
MbE�2m

ZZ
Sb

cos2ðkmzÞ½A
ðrÞ
b þ 1�dS �

1

2
MbE�2m

ZZ
SN

cos2ðkmzÞ½A
ðrÞ
N þUN �dS. (16)

In more general form, a1 can be expressed as

a1 ¼
1

2
MbE�2m

ZZ
Sb

p̂2
m½A

ðrÞ
b þ 1�dS �

1

2
MbE�2m

ZZ
SN

p̂2
m½A

ðrÞ
N þUN �dS. (17)

For a circular-port motor, a1 reduces to a1 ¼ 4
5
Mb½A

ðrÞ
b � g�, with g being the ratio of specific heats.
2.2.2. Dilatational energy integral

The second correction stems from the fourth irrotational term in Eq. (1) and is known as the dilatational
energy term. It is shown in previous studies that, being of OðM3

bÞ, a2 may be discounted [33]. For further
confirmation, one may start from

a2 ¼ E�2m expð�2amtÞ

ZZZ
V

4

3
d2û � rðr � ûÞ

	 

dV . (18)

One may then apply time averaging to get

a2 ¼
2

3
E�2m

ZZZ
V

d2ûm � rðr � ûmÞdV . (19)

Then using r � ûm ¼ kmp̂m and rp̂m ¼ �kmûm, one extracts

a2 ¼
2

3
E�2m

ZZZ
V

d2ð�rp̂m=kmÞ � rðkmp̂mÞdV ¼ �
2

3
d2E�2m

ZZZ
V

ðrp̂m � rp̂mÞdV . (20)

Additionally, one may use vector identities to deduce

a2 ¼ �
2

3
d2E�2m

ZZZ
V

½r � ðp̂mrp̂mÞ þ k2
mp̂2

m�dV . (21)

In both experimental tests and numerical simulations, acoustic modes are found to dominate. One may
therefore use the standard approximation adopted by Culick [49] and others, namely,

E2
m ¼

1

2

ZZZ
V

p̂2
m dV .

Eq. (21) becomes

a2 ¼ �
2

3
d2E�2m

ZZZ
V

r � ðp̂mrp̂mÞdV þ 2k2
mE2

m

2
4

3
5. (22)

The divergence theorem may now be applied along with the evaluation of the normal projections. One is left
with

a2 ¼ �
2

3
d2kmE�2m

ZZ
Sb

MbA
ðrÞ
b p̂2

m dS �

ZZ
SN

MbA
ðrÞ
N p̂2

m dS

2
64

3
75� 4

3
d2k2

m. (23)
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When evaluated for a circular-port motor, a2 reduces to

a2 ¼ � 8
15
xM3

b �
16
15
xM4

bk�1m ðA
r
b � g� 1Þ ¼ � 8

15
xM3

b½1þ 2S�1ðAr
b � g� 1Þ�. (24)

This factor is relatively small due to its dependence on xM3
b, an exceedingly small quantity [31].

2.2.3. Acoustic mean flow integral

By turning attention to the third growth rate factor, one finds

a3 ¼ E�2m expð�2amtÞ

ZZZ
V

hMbfû � ðû�XÞgidV � 0. (25)

This term vanishes because û�X is perpendicular to û, 8X.

2.2.4. Flow turning integral

The fourth factor connotes the flow turning correction [43] and is the first to depend on unsteady vorticity.
Starting with

a4 ¼ E�2m e�2amt

ZZZ
V

hMbû � ðU� xÞidV , (26)

the integrand may be expanded by recognizing that the vorticity is a function of the unsteady rotational
velocity, x ¼ r � ũ. Then, recalling that the unsteady flow is axisymmetric and that the acoustic velocity has
no radial or tangential components, one may insert qũr=qz ¼ OðM2

bÞ into the integrand to obtain

û � ðU� xÞ ¼ �ûzUr

qũz

qr
. (27)

At this juncture it is advantageous to substitute the values for ũz, Ur and ûz to retrieve

û � ðU� xÞ ¼ sinðkmzÞ e2amt sinðkmtÞr�1 sinðxÞ
qũr

m

qr
cosðkmtÞ þ

qũi
m

qr
sinðkmtÞ

� �
. (28)

In order to simplify Eq. (28), time averaging must be performed. One gets

a4 ¼ �
1

2
MbE�2m k�1m

ZZZ
V

r�1 sinðxÞ
qũi

m

qr
rp̂m dV , (29)

where

r�1 sinðxÞ
qũi

m

qr
rp̂m �

q
qr
ð�Urũ

i
m � rp̂mÞ. (30)

This approximation is valid due to the unsteady vorticity being O(Mb
�1) [46]. The radial part of the integral

may be determined entirely from the upper limit at r ¼ 1. The volume integral, noting that Ur(1) ¼ �1, may be
replaced by a surface integral of the form

a4 ¼
1

2
MbE�2m

ZZ
Sb

ũi
m � ûm dS. (31)

The non-time-averaged form of Eq. (31) is clearly

a4 ¼ expð�2amtÞMbE�2m

ZZ
Sb

hũi � ûidS. (32)
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Note that this integral is only defined over the burning surface; it is not to be evaluated over inert sections or
the nozzle entrance region. For a circular-port motor a4 reduces to

a4 ¼ �4
5
Mb. (33)

2.2.5. Rotational flow integral

The next rotational flow correction is the fifth growth rate factor and represents the first of the new terms
introduced by Flandro and Majdalani [43]. This correction stems from the convection of acoustic pressure by
virtue of the three-dimensional rotational velocity. From Eq. (1), the first of the rotational integrals yields

a5 ¼ �E�2m expð�2amtÞ

ZZZ
V

hũ � rp̂idV ¼ �E�2m expð�2amtÞ

ZZZ
V

hr � ðũp̂ÞidV , (34)

where vector identities have been used. At this point, a5 may be readily converted to surface form by direct
application of the divergence theorem; one gets

a5 ¼ �E�2m expð�2amtÞ

ZZ
S

hn � ðũp̂ÞidS, (35)

with n being the outward pointing vector normal to the boundaries. Time averaging is subsequently applied
along with the evaluation of applicable normal projections to produce, for a circular-port motor,

a5 ¼
1

2
E�2m

ZZ
Sb

Mbp̂2
m dS �

4

5
Mb. (36)

It may be interesting to note that a4 and a5 cancel when converted to surface form and then evaluated for the
full-length, internal burning cylinder. This result was first emphasized by Flandro and Majdalani [50] when the
cancellation occurred as they evaluated the volume integrals associated with this particular configuration.

2.2.6. Inviscid vortical integral

The sixth factor is dubbed the mean vortical correction [33]; it is given by

a6 ¼ E�2m expð�2amtÞ

ZZZ
V

hMbũ � ðU� xÞidV . (37)

The conversion of a6, being elaborate, is partly consigned to Appendix A. The outcome is

a6 ¼ �MbE�2m expð�2amtÞ

ZZ
S

n � U
1

2
ũ � ũ

 �� �	 

dS. (38)

This expression may be further simplified by expanding the rotational unsteady velocity into a tangential and a
wall-normal component (i.e., radial in a cylindrical chamber). Thus, using

ũ ¼ ðn � ũÞnþ ½ũ� ðn � ũÞn�, (39)

one recognizes that the tangential rotational component will satisfy the no-slip condition by identically
offsetting the irrotational velocity at the surface; hence

ũ� ðn � ũÞn ¼ �½û� ðn � ûÞn�. (40)

As shown in Ref. [46], the unsteady rotational velocity ðn � ũÞn that affects our calculations is negligible in
the exit plane, being situated near a velocity node. Evaluation over the head wall or nozzle surface SN may
hence be ignored. As the surface conversion is carried out over the burning surface Sb, one may substitute
n � ũ ¼ �Mbp̂: This turns Eq. (39) into

ũ ¼ �Mbp̂n� ½û� ðn � ûÞn� ¼ ð�Mbp̂þ n � ûÞn� û, (41)
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and so

ũ � ũ ¼ ðMbp̂Þ2 � ðn � ûÞ2 þ û � û. (42)

At this point, one may substitute Eq. (42) into Eq. (38) and carry out the time averaging operation. This
leaves

a6 ¼
1

4
E�2m

ZZ
Sb

MbðM
2
bf1� ½A

ðrÞ
b �

2gp̂2
þ ûm � ûmÞdS ¼

1

4
E�2m

ZZ
Sb

Mbðûm � ûmÞdS þOðM3
bÞ. (43)

Then using ûm ¼ �rp̂m=km, Eq. (43) becomes

a6 ¼
1

4
k�2m E�2m

ZZ
Sb

Mbðrp̂mÞ
2 dS. (44)

Evaluation for the simple test motor gives

a6 ¼ 2
5
Mb. (45)

2.2.7. Viscous integral

The next two rotational groups in Eq. (1) involve viscous damping expressions. For example, a correction to
the dilatational effect is represented in the seventh rotational term which may be transformed into a surface
integral using

4

3

ZZZ
V

hd2ũ � rðr � ûÞidV ¼ �
4

3
d2
ZZ

S

hn � ũqp̂=qtidS. (46)

Clearly, Eq. (46) must be negligible insofar as it scales with the product of d2 and the radial
unsteady velocity at the boundaries. Contrarily, the eighth term with viscous damping is not small; it
leads to

a7 ¼ E�2m expð�2amtÞ

ZZZ
V

h�d2ðûþ ũÞ � ðr � xÞidV . (47)

Then using uð1Þ ¼ ûþ ũ, one can put

a7 ¼ �d
2E�2m expð�2amtÞ

ZZZ
V

huð1Þ � ðr � xÞidV . (48)

Given that the conversion of a7 constitutes a problem in its own right, its analysis is summarized in
Appendix B. Its main result is

a7 ¼ �
1

2
d2E�2m expð�2amtÞ

km

Mb

 �2ZZ
S

hũ2i

������
r¼1

dS. (49)

To satisfy no slip at the surface, one puts ũm ¼ �ûm. Recalling that ûm ¼ sinðkmzÞ for a longitudinal plane
wave, one is left with

a7 ¼ �
1

4
d2E�2m ðkm=MbÞ

2

ZZ
S

½sin2ðkmzÞ�dS, (50)

or, equivalently,

a7 ¼ �
1

4
d2E�2m M�2

b

ZZ
S

qp̂m

qz

 �2

dS. (51)
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For a chamber dominated by longitudinal waves, one gets

a7 ¼ �
1

4
d2E�2m M�2

b

ZZ
S

qp̂m

qz

 �2

dS � �
4

15
xMb, (52)

where the approximation corresponds to the internal burning cylinder.

2.2.8. Pseudo acoustical integral

The pseudo acoustical correction is due to the relatively small pseudopressure that accompanies the vortical
field and its coupling with either the unsteady acoustical or rotational velocities. It has been shown that this
term is negligible, being O(Mb

3) [33,43]. The first of these two terms can be expressed as

a8 ¼ E�2m expð�2amtÞ

ZZZ
V

h�û � rp̃idV . (53)

A step-by-step derivation of the asymptotic closed-form solution for an internal burning cylinder is given by
Majdalani et al. [33], specifically,

a8 ¼
2M3

bl2

5m2
1� 3x2

M2
bl2

ðmpÞ2

� �
5Oð1Þ. (54)

Despite the applicability of Eq. (54) to circular-port chambers, its small order of magnitude is typical of that
calculated for other motors. It appears that this particular pseudo acoustical contribution remains small
regardless of the motor shape [30].

2.2.9. Pseudo rotational integral

The next growth rate factor is due to the less obvious coupling that is formed between vorticity-induced
pseudopressure and the unsteady rotational velocity. The significance of this term may be captured by
examining

a9 ¼ �E�2m expð�2amtÞ

ZZZ
V

hũ � rp̃idV . (55)

By use of vector identities, one can put

a9 ¼ �E�2m expð�2amtÞ

ZZZ
V

hr � ðũp̃ÞidV . (56)

Subsequently, application of the divergence theorem yields

a9 ¼ �E�2m expð�2amtÞ

ZZ
S

hn � ðũp̃ÞidS. (57)

The angle brackets may be removed through time averaging, thus changing Eq. (57) into

a9 ¼ �
1

2
E�2m

ZZ
SN

ðũr
mp̃

r
m þ ũi

mp̃
i
mÞdS. (58)

Unlike a8, this term can be expanded for two simple geometric shapes (slab and circular-port motors) and
shown to be large. In the case of a circular-port motor, a9 can be asymptotically expanded into [33]

a9 ¼ 9
200

p2lMbE�2m ½ðx
2
� 3

2
Þ expð�2xÞ þ 3

2
� 3xþ 2x2�x�4

’ 9
200

p2lMbE�2m ð1�
14
15
xþ 8

15
x2 � 8

35
x3 þ 5

63
x4 þ � � �Þ. (59)
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2.2.10. Unsteady nozzle integral

The 10th factor is the unsteady nozzle correction. It was shown previously that retention of unsteady
rotational energy gives rise to a term at the downstream chamber boundary [33]. This growth rate combines
the third and fourth rotational terms in Eq. (1) such that

a10 ¼ �MbE�2m expð�2amtÞ

ZZZ
V

hðûþ ũÞ � rðU � ũÞidV . (60)

To convert Eq. (60) to a double integral, we first let uð1Þ ¼ ûþ ũ; the integrand unfolds into

uð1Þ � ½rðU � ũÞ� ¼ r � ½uð1ÞðU � ũÞ� � ðU � ũÞr � uð1Þ. (61)

The first term on the right-hand-side can then be replaced byZZZ
V

hr � ½uð1ÞðU � ũÞ�idV ¼

ZZZ
V

hr � ½ũðU � ũÞ� þ r � ½ûðU � ũÞ�idV . (62)

These integrals can be easily converted to surface form using the divergence theorem. For example, one can
put ZZZ

V

hr � ½ũðU � ũÞ� þ r � ½ûðU � ũÞ�idV ¼

ZZ
S

hn � ½ũðU � ũÞ� þ n � ½ûðU � ũÞ�idS. (63)

The normal projections of û are O(Mb); the second surface integral on the right-hand-side of Eq. (63) may be
ignored, being O(M2

b). This turns Eq. (63) intoZZZ
V

hr � ½ũðU � ũÞ�idV ¼

ZZ
S

hn � ½ũðU � ũÞ�idS. (64)

In like manner, the second term on the right-hand-side of Eq. (61) can be written as

�ðU � ũÞr � uð1Þ ¼ �ðU � ũÞr � û� ðU � ũÞr � ũ. (65)

Since r � ũ ¼ 0, Eq. (65) simplifies into

ðU � ũÞr � uð1Þ ¼ ðU � ũÞr � û. (66)

At length, a10 becomes

a10 ¼ �MbE�2m expð�2amtÞ

ZZ
S

hn � ½ũðU � ũÞ�idS �

ZZZ
V

hðU � ũÞr � ûidV

8<
:

9=
;. (67)

Thus, by evaluating the second term on the right-hand-side of Eq. (67), one retrievesZZZ
V

hðU � ũÞr � ûidV ¼

ZZZ
V

hkmpz cosðxÞ sinðxÞ ef sinðcÞ sin½sinðxÞkmz�

� cosðkmzÞ e2amt cosðkmtÞ sinðkmtÞdVi. (68)

As expected, the radial integral yields a value of O(Mb). Although Eq. (68) corresponds to the case of a full-
length circular-port motor, it may be shown that this component is small for other geometric shapes. For the
general case of an arbitrary motor, one must evaluate

a10 ¼ �MbE�2m expð�2amtÞ

ZZ
S

hn � ½ũðU � ũÞ�idS. (69)
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Table 1

Rotational integrals in both volume and surface integral forms.

Volume form Surface form SSPa form

Em
2

E2
m ¼

1

2

ZZZ
½ðp̂mÞ

2
þ ûm � ûm þ 2ûm � ũ

i
m þ ũr

m � ũ
r
m þ ũi

m � ũ
i
m�dV

a1 E�2m

expð2amtÞ

ZZZ
V

�r � p̂ûþ
1

2
MbUðp̂Þ

2

� �
�Mb½û � rðU � ûÞ�

	 

dV

�E�2m

expð2amtÞ

ZZ
s

n � p̂ûþ
1

2
MbUðp̂Þ

2

� �
�Mb½n � ûðU � ûÞ�

	 

dS 1

2
MbE�2m

ZZ
Sb

p̂2
m½A

ðrÞ
b þ 1�dS �

ZZ
SN

p̂2m½A
ðrÞ
N þUN �dS

8><
>:

9>=
>;

a2 E�2m

expð2amtÞ

ZZZ
V

4

3
d2û � rðr � ûÞ

	 

dV

4kmd
2E�2m

3 expð2amtÞ

ZZ
S

hn � ðp̂ûÞidS �
1

3
d2E�2m k2

mpl
�
2

3
kmd

2E�2m

ZZ
Sb

MbA
ðrÞ
b p̂2

m dS �

ZZ
SN

MbA
ðrÞ
N p̂2m dS þ

1

2
kmpl

2
64

3
75

a3 E�2m

expð2amtÞ

ZZZ
V

hMbfû � ðû�XÞgidV

0 0

a4 E�2m

expð2amtÞ

ZZZ
V

hMbû � ðU� xÞidV
MbE�2m

expðamtÞ

ZZ
Sb

hũi � ûidS �
1

2
MbE�2m

ZZ
Sb

ûm � ûm dS

a5 E�2m

expð2amtÞ

ZZZ
V

h�ũ � rp̂idV
�E�2m

expð2amtÞ

ZZ
S

hn � ðũp̂ÞidS
1

2
MbE�2m

ZZ
Sb

p̂2
m dS

a6 E�2m

expð2amtÞ

ZZZ
V

hMbũ � ðU� xÞidV
�MbE�2m

expð2amtÞ

ZZ
S

n �U
1

2
ũ � ũ

 �	 

dS

1

4
k�2m MbE�2m

ZZ
Sb

ðrp̂mÞ
2 dS

a7 E�2m

expð2amtÞ

ZZZ
V

h�d2ðûþ ũÞ � ðr � xÞidV
�
d2E�2m k2

mM�2
b

2 expð2amtÞ

ZZ
S

hũ2i

������
r¼1

dS
�
1

4
d2E�2m M�2

b

ZZ
Sb

ðrp̂mÞ
2 dS

a8 E�2m

expð2amtÞ

ZZZ
V

h�û � rp̃idV
2M3

bl2

5m2

2M3
bl2

5m2

a9 �E�2m

expð2amtÞ

ZZZ
V

hũ � rp̃idV
�E�2m

expð2amtÞ

ZZ
S

hn � ũp̃idS
�1

2
E�2m

ZZ
SN

½ũr
m p̃

r
m þ ũi

mp̃
i
m�dS

a10 �E�2m

expð2amtÞ

ZZZ
V

hMbðûþ ũÞ � rðU � ũÞidV
�MbE�2m

expð2amtÞ

ZZ
S

hn̂ � ½ũðU � ũÞ�idS
�Mb

2E2
m

ZZ
SN

½ðũi
mÞ

2
þ ðũr

mÞ
2
�Uz dS

aStandard stability prediction code used by French et al. [22].
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Finally, time averaging of Eq. (69) turns it into

a10 ¼ �
1

2
MbE�2m

ZZ
SN

½ðũr
mÞ

2
þ ðũi

mÞ
2
�Uz dS. (70)

For the circular-port motor geometry, a10 may be asymptotically approximated [33]. Its small x expansion
renders

a10 ¼ � 9
200

p2lMbE�2m ½ðx
2
� 3

2
Þ expð�2xÞ þ 3

2
� 3xþ 2x2�x�4

’ � 9
200

p2lMbE�2m ð1�
14
15
xþ 8

15
x2 � 8

35
x3 þ 5

63
x4 þ � � �Þ. (71)

In the interest of clarity, the 10 converted integrals are summarized in Table 1.
3. Results and discussion

3.1. Verification

Numerical integration of the surface integrals was performed for a group of representative chamber lengths
and grains. Three routinely used cases were selected as characteristic examples for testing the present
formulation [43]. These representative motors were chosen because they aptly characterize a wide range of
motors. Table 2 lists their physical and geometric parameters. The dimensional growth rates for the
representative motors are calculated and posted in Table 3. The growth rates are normalized using
a	 ¼ aa0=R, where the asterisk (*) denotes a dimensional quantity. The acoustic mean flow correction, a3 ¼ 0,
is omitted. It may be instructive to note that a similar numerical study has been performed [33] in which
the original volume integrals were evaluated for a circular-port motor and the same three cases delineated in
Table 2. Results of those volume integrals can be compared to the ones obtained here in an effort to validate
the surface formulation. To this end, the outcome derived from volume integration is displayed in Table 3,
thus illustrating the level of agreement between the two methods. One major advantage of the surface form
stands in its sole dependence on the acoustic field.
Table 2

Physical parameters for the routinely cited representative cases [43].

Motor L (m) R (m) Mb d km S x f (Hz) Ab
(r) (m/s)

Small motor 0.60 0.025 1.7�3 5.49�4 1.31�1 77.00 1.0512 1227 2.5 1472

Tactical rocket 2.03 0.102 3.1�3 2.74�4 1.58�1 50.92 0.0628 360 1.2 1462

RSRM 35.1 0.700 2.3�3 1.04�4 6.27�2 27.24 0.0035 19.5 1.0 1369

Table 3

Numerically evaluated integrals of individual growth rates (s�1) [33].

Motor Study a1
* a2

* a4
* a5

* a6
* a7

* a8
* a9

* a10
*

Small motor Surface 96.1 �1.62�4 �80.1 80.1 40.0 �28.06 0.0644 11.5 �11.5

Volume 96.1 �1.62�4 �80.0 80.0 39.2 �18.61 0.0644 11.5 �11.5

Tactical rocket Surface �3.55 �1.43�5 �35.5 35.5 17.8 �0.744 0.0627 9.62 �9.62

Volume �3.55 �1.43�5 �35.7 35.7 16.5 �0.716 0.0627 9.62 �9.62

RSRM Surface �1.08 �4.43�8 �3.60 3.60 1.80 �0.00419 0.0179 1.01 �1.01

Volume �1.08 �4.43�8 �3.66 3.66 1.66 �0.00411 0.0179 1.01 �1.01
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Table 4

SSP evaluated surface integrals of individual growth rates (s�1).

Motor a1
* a4

* a5
* a6

* a7
*

Small motor 96.41 �80.01 80.01 40.04 �28.03

Tactical rocket �3.52 �35.54 35.54 17.78 �0.744

Space shuttle SRB �1.08 �3.60 3.60 1.80 �0.0042
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One point of discrepancy in Table 3 stems from the evaluation of the viscous correction, a7, for the small
motor (where an error of 33 percent is accrued). This relatively large error can be attributed to the small motor
having a viscous parameter in excess of unity. By virtue of the asymptotic approximations used in the
derivation process, the range of applicability for the closed-form solutions must be bracketed, specifically to
motors with xo1. This requirement is not too restrictive, as most practical motors are characterized by a small
viscous parameter.

The other eight growth rate integrals display a maximum error of 8.4 percent; this peak error occurs in a6
for the reusable solid rocket motor (RSRM). The overall level of agreement between volume and surface
integrals is showcased in Table 3; it may be deemed satisfactory in most engineering applications, especially
when considering the uncertainties associated with the acquisition of combustion instability data. While flow
variables can be difficult to calculate throughout the chamber, the new surface forms mitigate this problem by
providing integrals that are more easily amenable to evaluation.

Before leaving this subject, we insist that numerical evaluation of the surface integrals be performed
independently, using the standard stability prediction code. This code makes use of the growth rate factors
that are of O(Mb) and larger. As such, a2, a3 and a8 are not calculated. In Table 4, separately acquired results
are presented to allow for their comparison to ours. Clearly, the new computations are found to be in excellent
agreement with the numerically evaluated integrals of Table 3.

3.2. Discussion

The transformed integrals are collected in Table 1 where the original and newly converted forms are listed
side-by-side. The surface integrals are expressed in field vector form, before time averaging, and also in a form
that is most suitable for implementation in acoustical codes. It must be noted that these integrals correspond
to the linear growth rate behaviour preceding the onset of nonlinear oscillations. A similar analysis needs to be
applied to the nonlinear growth rate integrals that control the system behaviour during wave steepening and
establishment of limit cycle amplitudes.

Of the 10 integrals posted in Table 1, it should be noted that only seven are important. These include
(i) pressure coupling a1, (ii) flow turning a4, (iii) rotational flow correction a5, (iv) mean vortical correction a6,
(v) viscous damping a7, (vi) pseudo rotational correction a9, and (vii) unsteady nozzle correction a10. Two
important corrections not covered here are due to particle damping and distributed combustion. These are
covered quite thoroughly by Culick and Yang [51].

Having obtained the surface integral forms of the most significant growth rate contributions, the newly
simplified expressions may be readily incorporated into numerical codes as reported in Ref. [22].

Another key aspect that this study addresses is the impact of retaining the pseudopressure. Being the
unsteady pressure wave (or pseudosound) generated at solid boundaries, p̃ is ignored in most stability
calculations because of (a) its small magnitude and (b) its rapid decay away from the burning surface.
However, considering that most important stability interactions occur in the vicinity of the propellant surface,
it is not surprising that one of the two pseudo corrections is not negligible (i.e., a9). This point is confirmed
in the present analysis as pseudo-related corrections are examined in both volume and surface form.
Interestingly, a9 and a10 are self-cancelling despite their widely dissimilar acoustic sources (a10 is due to
unsteady energy exiting the chamber).
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4. Closing remarks

This study showcases a step forward in improving the mathematical modelling of acoustic energy for
chambers undergoing linear oscillations. Its usefulness lies in the simplification of the growth rate expressions
to equivalent, albeit more manageable identities and approximations. The converted surface integrals are
obtained in conceptual form that is independent of chamber geometry, although the validation is carried out
for the case of a circular-port chamber. Based on three representative motors, the newly derived surface
integral representations of the combustion instability growth rate factors may be substituted for the more
complex volume forms. It must be remembered that the surface integrals assume small viscosity (xo1) and
correspond to the linear growth rate behaviour preceding the onset of nonlinear oscillations. So while our
stability integrals remain general, our evaluation of these integrals is limited to the test case considered here,
namely, to that of an internal burning cylindrical motor. When more complex geometric shapes are
considered, one must obtain the mode shapes and frequencies numerically.
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Appendix A. Vortical correction

This section delineates the procedure for converting a6. This factor is dubbed the mean vortical correction
and consists of

a6 ¼ E�2m expð�2amtÞ

ZZZ
V

hMbũ � ðU� xÞidV . (A.1)

Eq. (A.1) can be further simplified using x ¼ r � ũ, namely,

a6 ¼MbE�2m expð�2amtÞ

ZZZ
V

hũ � ½U� ðr � ũÞ�idV . (A.2)

Upon expansion, one finds

r � ũ ¼
qũr

qz
�

qũz

qr

 �
êy. (A.3)

Note that Eq. (A.3) is contingent upon the unsteady rotational velocity being axisymmetric and having no
y-component. The integrand becomes

ũ � ½U� ðr � ũÞ� ¼ �ũrUz
qũr

qz
�

qũz

qr

 �
þ ũzUr

qũr

qz
�

qũz

qr

 �
. (A.4)

Recalling that qũr=qz ¼ OðM2
bÞ, one is left with

ũ � ½U� ðr � ũÞ� ¼ ũrUz

qũz

qr
� ũzUr

qũz

qr
. (A.5)

The first term on the right-hand-side of Eq. (A.5) can be shown to be negligible. Considering that
ũr ¼ OðMbÞ, this term combines with the Mb on the outside of the volume integral to yield OðM2

bÞ.
Consequently, Eq. (A.5) becomes

ũ � ½U� ðr � ũÞ� ¼ �ũzUr

qũz

qr
. (A.6)

At this juncture, we may shift our attention to the term

r � ðU1
2
ũ � ũÞ ¼ 1

2
r � ½Uðũrũr þ ũzũzÞ�. (A.7)
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Recalling that r �U ¼ 0, it is straightforward to show that Eq. (A.7) may be expanded and simplified
into

r � U
1

2
ũ � ũ

 �� �
¼ Urũr

qũr

qr
þUzũr

qũr

qz
þUzũz

qũz

qz
þUrũz

qũz

qr
. (A.8)

Then, owing to qũr=qz ¼ OðM2
bÞ, Eq. (A.8) reduces to

r � U
1

2
ũ � ũ

 �� �
¼ Urũr

qũr

qr
þUzũz

qũz

qz
þUrũz

qũz

qr
. (A.9)

The first term on the right-hand-side of Eq. (A.9) is also small because ũr ¼ OðMbÞ; one is left with

r � U
1

2
ũ � ũ

 �� �
¼ Uzũz

qũz

qz
þUrũz

qũz

qr
. (A.10)

Forthwith, the integral of the first term on the right-hand-side of Eq. (A.10) yields

I ¼

ZZZ
V

Uzũz

qũz

qz

	 

dV ¼

ZZZ
V

pz cosðxÞ e2amt½ũr
m cosðkmtÞ þ ũi

m sinðkmtÞ�

	

�
qũr

m

qz
cosðkmtÞ þ

qũi
m

qz
sinðkmtÞ

� �

dV . (A.11)

Then, through time averaging, one collects

I ¼

ZZZ
V

1
2pz cosðxÞ e2amt ũr

m

qũr
m

qz
þ ũi

m

qũi
m

qz

 �
dV . (A.12)

Additionally, substituting the expressions for ũr
m and ũi

m renders

I ¼
1

2
kmp e2amt

ZZZ
V

z cosðxÞ sin3ðxÞ e2f sin½sinðxÞkmz�

� fsin2ðcÞ cos½sinðxÞkmz� þ cos2ðcÞ cos½sinðxÞkmz�gdV . (A.13)

As shown before [37], the phase angle cðrÞ ¼ �½km=ðpMbÞ� ln tanð1
2
xÞ controls the wavelength and spatial

frequency of rotational shear waves. The real argument, f(r), is responsible for viscous damping. Hence, one
may put

I ¼
1

2
kmp e2amt

Z l

0

Z 2p

0

Z 1

0

z cosðxÞ sin3ðxÞ e2f sin½sinðxÞkmz� cos½sinðxÞkmz�rdrdydz. (A.14)

It can be shown that this part is negligible, being of O(Mb
2). Eq. (A.10) reduces to

�r �U
1

2
ũ � ũ

 �
¼ �Urũz

qũz

qr
. (A.15)

Note that Eq. (A.6) may be replaced by Eq. (A.15). Then using the divergence theorem, one retrieves

a6 ¼
�MbE�2m

expð2amtÞ

ZZ
S

n � U
1

2
ũ � ũ

 �� �	 

dS. (A.16)

Appendix B. Viscous correction

This Appendix delineates the main procedure for converting a7 given

a7 ¼ �d
2E�2m expð�2amtÞ

ZZZ
V

huð1Þ � ðr � xÞidV . (B.1)
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Eq. (B.1) may be simplified by the use of the identity, r � ðA� BÞ ¼ B � ðr � AÞ � A � ðr � BÞ; this translates
into

uð1Þ � ðr � xÞ ¼ r � ½x� uð1Þ� þ x � ½r � uð1Þ�. (B.2)

Then, recalling that

r � û ¼ 0; r � ũ ¼ x; r � uð1Þ ¼ x, (B.3)

one can put

uð1Þ � ðr � xÞ ¼ r � ½x� uð1Þ� þ x � x, (B.4)

such that

a7 ¼ �d
2E�2m expð�2amtÞ

ZZZ
V

hr � ½x� uð1Þ� þ x � xidV . (B.5)

This volume integral may be separated and partially converted to a surface integral using the divergence
theorem. The first term in Eq. (B.5) yieldsZZZ

V

hr � ½x� uð1Þ�idV ¼

ZZ
S

hn � ½x� uð1Þ�idS. (B.6)

Fortuitously, this term simply vanishes. This is caused by the necessity of u(1) to remain parallel to n. In
adherence to the no-slip requirement at the surface, there can be no velocity component parallel to the grain
the surface. One is left with ZZZ

V

huð1Þ � r � xidV ¼

ZZZ
V

hx � xidV , (B.7)

and so

a7 ¼ �d
2E�2m expð�2amtÞ

ZZZ
V

hx � xidV . (B.8)

The resulting integrand is a scalar. The corresponding physical problem displays conventional boundary
layer behaviour. One can therefore employ the Von Kàrmàn–Polhausen method and evaluate the part of the
integral normal to the surface. At the wall,

x ¼ r � uð1Þ ¼ õey ¼
qũr

qz
�

qũz

qr

 �
ey ¼ �

qũz

qr
ey, (B.9)

where

ũz ¼ eamt sinðxÞ expðfÞ sin½sinðxÞkmz�½sinðcÞ cosðkmtÞ � cosðcÞ sinðkmtÞ�; x ¼
1

2
pr2;

õ ¼
km

Mb

eamtr expðfÞ sin½sinðxÞkmz�½cosðcÞ cosðkmtÞ þ sinðcÞ sinðkmtÞ� þOð1Þ;

8>><
>>: (B.10)

and so

x � x ¼
km

Mb

 �2

e2amtfr expðfÞ sin½kmz sinðxÞ�g2½cosðcÞ cosðkmtÞ þ sinðcÞ sinðkmtÞ�2. (B.11)

In order to further simplify Eq. (B.11), time averaging may be applied. Given two dissimilar time scales for
oscillations and wave attenuation, one obtains

hx � xi ¼ 1
2
ðkm=MbÞ

2 e2amtfr expðfÞ sin½kmz sinðxÞ�g2. (B.12)
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To make headway, it is instructive to digress and consider the unsteady rotational velocity. When time
averaging is performed for ũ2z , one gets

hũ2zi ¼
1
2
e2amtfsinðxÞ expðfÞ sin½kmz sinðxÞ�g2. (B.13)

Noting that vorticity effects are most pronounced near the surface where r ¼ sin(x) ¼ 1, one can put

hx � xi � 1
2
ðkm=MbÞ

2 e2amtfexpðfÞ sin½kmz sinðxÞ�g2

hũ2zi �
1
2
e2amtfexpðfÞ sin½kmz sinðxÞ�g2

(
(B.14)

Hence, to leading order approximation, one has

hx � xi �
1

2

km

Mb

 �2 qũ2z
qr

* +
. (B.15)

At the outset, a7 becomes

a7 ¼ �
1

4
d2E�2m ðkm=MbÞ

2

ZZZ
V

qũ2m
qr

dV . (B.16)

Thus, for the circular-port motor, one can write

a7 ¼ �
1

4
d2E�2m ðkm=MbÞ

2

ZZ
S

Z 1

0

qũ2m
qr

dr

 �
dS. (B.17)

This expression reduces to

a7 ¼ �
1

4
d2E�2m ðkm=MbÞ

2

ZZ
S

ũ2m

������
r¼1

dS, (B.18)

which corresponds to the non-time averaged form

a7 ¼ �
d2E�2m

2 expð2amtÞ

km

Mb

 �2ZZ
S

hũ2i

������
r¼1

dS. (B.19)

The accuracy of the above approximation increases as the Taylor–Culick mean flow is replaced by a more
realistic turbulent profile. When turbulence prevails, damping of unsteady velocities and vorticity occurs more
rapidly while their magnitudes near the wall remain the same (see Ref. [52]). Under such conditions, the
velocity integral in the radial direction approaches its value at the injection surface.
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[44] F. Chedevergne, G. Casalis, T. Féraille, Biglobal linear stability analysis of the flow induced by wall injection, Physics of Fluids 18

(2006) 014103–014114.

[45] G.A. Flandro, On flow turning, Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 1995, Paper No.

95-2730.

[46] J. Majdalani, G.A. Flandro, The oscillatory pipe flow with arbitrary wall injection, Proceedings of the Royal Society, London A 458

(2002) 1621–1651.

[47] J. Majdalani, The boundary layer structure in cylindrical rocket motors, AIAA Journal 37 (1999) 505–508.
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